Comparison of Finite-Element and Finite-Difference Schemes. Part I: One-Dimensional Gravity Wave Motion

1978 ◽  
Vol 8 (4) ◽  
pp. 676-679 ◽  
Author(s):  
W. C. Thacker
2013 ◽  
Vol 13 (3) ◽  
pp. 281-289
Author(s):  
Manfred Dobrowolski

Abstract. We study the convergence of finite difference schemes for approximating elliptic equations of second order with discontinuous coefficients. Two of these finite difference schemes arise from the discretization by the finite element method using bilinear shape functions. We prove an convergence for the gradient, if the solution is locally in H3. Thus, in contrast to the first order convergence for the gradient obtained by the finite element theory we show that the gradient is superclose. From the Bramble–Hilbert Lemma we derive a higher order compact (HOC) difference scheme that gives an approximation error of order four for the gradient. A numerical example is given.


Author(s):  
Enrico Babilio ◽  
Stefano Lenci

The present contribution reports some preliminary results obtained applying a simple finite element formulation, developed for discretizing the partial differential equations of motion of a novel beam model. The theoretical model we are dealing with is geometrically exact, with some peculiarities in comparison with other existing models. In order to study its behavior, some numerical investigations have already been performed through finite difference schemes and other methods and are reported in previous contributions. Those computations have enlightened that the model under analysis turns out to be quite hard to handle numerically, especially in dynamics. Hence, we developed ad hoc the total-lagrangian finite-element formulation we report here. The main differences between the theoretical model and its numerical formulation rely on the fact that in the latter the absolute value of the shear angle is assumed to remain much smaller than unity, and strains are piecewise constant along the beam. The first assumption, which actually simplifies equations, has been taken on the basis of results from previous integrations, mainly through finite difference schemes, which clearly showed that, while other strains can achieve large values in their range of admissibility, shear angle actually remains small. The second assumption led us to define a two-nodes constant-strain finite element, with a fast convergence, in terms of number of elements versus solution accuracy. Although, at the present stage of this ongoing research, we have only early results from finite elements, they appear encouraging and start to shed new light on the behavior of the beam model under analysis.


Sign in / Sign up

Export Citation Format

Share Document